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Ferrimagnetic-helimagnetic transition in an X Y  magnet 
with infinitely many phases 

A Pimpinellit, G Uiminf and J Villain 
Dipartement de Recherche Fondamentale du Centre d’Etude Nucliaire de Grenoble 
85X, 38041 Grenoble Cidex, fiance 

Received 22 February 1991 

Abstract. W e  present in this work an anisotropic frustrated classical spin model, in 
which the coexistence of continuous and discrete degrees of frefslom can be explidtly 
considered. W e  investigate an array of planar (xu) spins with usual bilinear exchange, 
on decorated lattice both in two and three dimensiors, whose zero-temperature state 
is infinitely degenerate. The set of gmund states indudes a uniform ferrimagnetic 
arrangement, a uniform h&magnet, and any arbitrary admixture of thuein the form 
of coexisting striped domains. 

Ea& ground state in the degeneracy manifold can be exactly mapped to a specified 
configuration of an anisotropic Ising model on the dud lattice. Ising spins represent 
the diacrete chirality degrees of freedom. Low-temperature continuous excitations 
(spin waves) couple these king spins, seleding the configuration corresponding to 
the ferrimagnetic state (order b y  t h e m n l  dimrdcr). 

Adding a competing next-nearest-neighbour interaction allows one to tune a tran- 
sition to the helimagmt; at low temperature the transition OC- throuph an infinite 
sequence of steps, consisting of fust-order phare transitions to sucoersive ferrimag- 
netic phhases, each made of helimagnetically ordered stripes of constant width. The 
width increases from p h e  to phase, and chirality alternates from stripe to stripe. 

A discussion of the relationship between decorated continuous spin models and 
multi-spin interaction is given. 

1. Introduction 

Although the concept of frustration in spin systems was introduced by Toulouse as 
far back as 1977 [l] , it is still a copious source of surprises. 

Even confining one’s scope to classical spins, one faces commensurate- 
incommensurate transitions [2,3,4] under the disguise of ferrehelix transitions [5,6], 
domains and domain walls [7,8], infinitely degenerate groundstates [9] and the associ- 
ated curious behaviour known as order by disorder [lo-121, floating phases [13,14,15], 
Devil’s [16,17] and other [17,18,19,20] staircases, no longer only a mathematician’s 
dream. This short list is all but exhaustive. 

In this work we discuss a model which contains many of these features, not only, 
we hope, as a physicists’ dream, but as a tentative approach to the helimagnetic 

t Permanent address: Dipartimento di Fisica, V. delle Scieme, 43100 Parma, Italy. 
t P m e n t  address: L.D. Landau Institute for Theoretical Physics, Chernogolovh, Moscow region, 
USSR. 
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compounds BaM2(X0& (M = CO, Ni; X = P, As) (see, e.g., [21] and references 
therin); these are considered good examples of quasi-ZD XY spin systems, as shown 
by the excellent agreement of their critical behaviour with that proposed by Kosterlitz 
and Thouless 1221, were i t  not for the unexplained presence of a sharp, quasi-king peak 
in the specific heat. One is tempted to associate this peak with excitations of discrete 
nature, as domain walls or chirality fluctuations; therefore, even though we have not, 
for the moment, addressed the specific problem of these materials, we sought a model 
that could accommodate discrete degrees of freedom side by side to the continuous 
ones of 2-component (xu)  classical spins. 

I t  is well known [23] that the helimagnetic order parameter has an Ising-like sym- 
metry due to the existence of r ight  and left-hand helices (helicily or chirality), and we 
have thought of a system where domains of opposite helicity could coexist, the ther- 
modynamics then being controlled by the dynamics of the separating domain walls. 

We will present such a model in section 2, where we will show how the continuous 
degrees of freedom (spin waves) can be integrated out at low temperature, in order 
to obtain an effective, temperature dependent, wall-wall interaction. Section 3 will 
then be devoted to the investigation of wall dynamics in two and three dimensions; 
the effective coupling turns out to  be attractive, therefore stabilizing the phase with 
the shorter wall-wall period. With appropriate spin-spin couplings, we drive the 
system through a collinear-modulated transition, which takes place through an infinite 
sequence of first-order steps. All phases with integer inter-wall spacing from 1 to 00 
are visited. Section 4 is for discussion and conclusions. In the appendices we remark 
on technical points and discuss the relationship between decorated spin models and 
multi-spin interactions. 

2. A frustrated sys tem 

2.1. The model 

Having in mind a system containing domain walls it was only natural to consider an 
anisotropic spin model. The presence of coexisting domains is obtained by the choice 
of a decorated lattice (figure 1) It consists of a face-centred square lattice, whose 
corners are occupied by twc-component (XY) classical spins S,, mutually interacting 
with exchange integrals J. and Jy along coordinate axes, and coupled to the four sur- 
rounding XY spins up at the plaquette centres; calling J, the corresponding coupling 
constant, the resulting Hamiltonian reads 

where 6, and 6, are the unit vectors of positive coordinate axes, while 6, joins any 
corner site to each face centre to its left and right in the direction of the positive y 
axis, i.e. 6, = (6, + 6 ) / 2  = -6, and 6, = (6, - 6,)/2 = -64. The size ofthe system 
is assumed to be N in each direction. 

In order to make the model three-dimensional, we stack identical copies of our 
bidimensional lattice along a, direction perpendicular to the planes ( z  direction); a 
ferromagnetic coupling is introduced between neighbouring spins in this direction, in 
such a way that the system looks like a tetragonal lattice with face-centred basal 
planes. 

.Y 
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Figure 1. 
assumed ferromagnetic, while Jv is antiferromapelic. 

Decorated lattice and in-plane couplings are shown. 51 and J, are 

F- 1 1 1  '+-- 
Figure 2. Ground state configurations of the model as function of the reduced 
couplings j ,  = J,/& and j ,  = JV/.ll (J1)O). F is the collinear ferromagnetic 
region, D* and DY label infinitely degenerate stales (see text), Ferri is a twofold 
degenerate ferrimagnetic phase. The present work focusnes on DU. 

2.2. Ground state (T=O) configurations 

In the following we will consider the system only as two-dimensional, as ground state 
configurations do not depend on z direction under our assumptions. 

Since the model can be regarded as the juxtaposition of uncoupled plaquettes, 
we look for ground states among the configurations that minimize the energy of each 
plaquette, defined as 

1 
Ep = -[ ,J=[ cos(4R+6, - 4R) + cos (~Rt ( l~ t6 ,  - 4Rt6,,)1 

1 + s J y  [ c0s(4Rt6v - 4R) + c0s(4R+6,t6y - #Rt6.)1 

+ Jl [ cos(4R - ) + c0S(4Rt6, - 4 p 3  

+ cos(4R+6v+6, - 4 p ~ )  + '-(4Rt6= - 4p1)1} (2) 

where p1 = R +  Sl marks the centre of the chosen plaquette, and we assumed S = 
u = l .  

This minimum energy condition is not sufficient, and one must require that con- 
figurations of neighbouring plaquettes are not conflicting; possible ground state are 
then (see figure 2): 

(i) a usual ferromagnetic phase (F); 
(ii) two highly degenerate phases (DZ and DY), whose characterization we will give 

only for DY, say, since they transform into each other under 2 - y. Define for each 
plaquette the four angles formed by corner spins with the central one as (I, p', y and 
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5 ,  starting from the upper left corner and turning clockwise; then in configuration DY 
one has 

(3) ~~ ~ ~~ ~ 

QY 

2 
(I = 6 = -p = -7 = f- 

with cos(QY/2) = -l/jy, jy J, /IJ,I .  The high degeneracy isdue to the fact that the 
sign of the phase difference along the y direction in one plaquette, 20, is completely 
uncorrelated with that in the adjacent plaquettes; we will return later in greater detail 
to this point; 

(iii) a ferrimagnetic phase (Ferri) with 
Q(4 

o =-, = -@ = -6 = f- 2 C O S ( Q " ~ ) / ~ )  = -l/(js +ill) (4) 
with the same definitions as before. In this case thesign ofthe phase difference between 
neighbouring spins, when selected once for one plaquette, determines the sign in all 
other plaquettes. The degeneracy is therefore only twofold. 

Boundaries between phases are given by: 
(F-Dr) j z  =-1 

(F-Dy) jy = -1 

(F-Ferri) j ,  + jy = -1  
j = O  

( DY-Ferri) j ,  = O .  

j ,  < 0, jy < 0 

( Dr-Ferri) Y 

Since the sign of 3, is completely immaterial in this classical model, we will take 
J ,  > 0, and eventually J ,  = 1. 

Let us focus now our attention on phase (ii) ( J ,  z 0). This case is of special 
interest since the ground state, in addition to its usual rotational degeneracy, has, as 
we said, degeneracy due to frustration. The angle between spins is zero along the 
2 direction, and the ground state consists of horizontal rows of parallel spins; lhe 
angle Q4; between the nth and (n + 1)th rows is constrained in its amplitude by the 
exchange parameters, but its sign is completely undetermined. This means that in the 
ground state we can write QZ = T ~ Q ,  where Q is a constant and T,, = & I  is an king 
(pseudo)spin; we therefore realize that there is a one-to-one correspondence between 
a specified configuration of these king spins and a zero-temperature configuration of 
the model. 

Note that to a uniform ferromagnetic arrangement of Ising variables corresponds 
a uniform helimagnefic (figure 3 ( b ) )  ground state, while a ferrimagnetic (figure 3(a)) 
arrangement of XY spins translates, in king spins language, into an antiferromagnet 
along the y direction. 

A consequence of this peculiar kind of degeneracy is that domains of coexisting 
phases (figure 3(c ) ) ,  and therefore walls parallel to the 'ferromagnetic axis' I, are 
allowed with no cost of energy at T = 0. The free energy of walls will not vanish, 
however, at finite temperature, leading to some kind of fluctuation-mediated interac- 
tion between walls; this has as a Consequence the selection of a special value of the 
periodicity in the wall array, and therefore to the selection of one state out of the 
degeneracy manifold. This is the form taken in our model by the general principle of 
'order by disorder', which is just the selection of an ordered state, made by thermal 
or quantum fluctuations among a variety of degenerate configurations. 

We turn therefore to the low temperature treatment of the model. 
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Figure 3. Detailed configurations in region DY are shown: (s) a uniform ferrimag- 
netic state, (a) a uniform helimagnetic arrangement and (c) a mixed configuration 
showing coexistence of isoenergetie ferrimagnetic and helical domains at T = 0.  

2.9. Spin-wave theory 

As usual, we write the Hamiltonian in the form adequate for XY spins 

and expand the cosines about the ground state values 4; of the angular variables, 
introducing the deviations G R  = $ R  - O R .  0 

where J?’ = J ,  - &), Jt’ = J,sin(&+,D - 4%) and 6, runs over all 
nearest neighbours of site R, both at plaquette’s corners and plaquette’s centres. 

As we have seen, the high degeneracy in the ground state of the model stems 
from the fact that the condition cosQY = -l/jy constrains the absolute value of the 
angle QY between neighbouring rows, but not its sign; any ground state can in fact be 
characterized by a unique distribution of columns of plus and minus signs parallel to 
the y axis; equivalently, an king spin can be assigned to each plaquette according to 
the following rule: 

where a,  6 ,  c, d label the four plaquette’s corners. Spins parallel to the y axis take 
the same value, reducing the problem to 1-dimensional at T = 0. 

Thermal fluctuations will then couple these king spins, so that we are able to map 
the free energy at finite (low) temperature of our XY system to the ground state energy 
of an king system, whose coupling constant vanishes with T. 
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To show how this works, we make use of perturbation theory, keeping the quadratic 
part in (6) as a reference Hamiltonian and cubic terms as perturbation. In fact, 
all even-power terms depend on 4; - $, only through cosines, and have the refore 
the same sign in each T = 0 configuration {$"}; their contributions would therefore 
cancel identically when comparing the free energies of different ground states. Only 
odd-power terms need to be considered if we are interested in ground state selection. 

The free energy for fixed TS is, to second order: 

where the average (...), is taken with respect to the harmonic part of (6), F, is a 
function of temperature only and If?({+}) is defined as 

Note that T ,  and vZ may be either corners or cenbres of plaquettes, and dependence 

To be consistent with perturbation approach we must expand the logarithm and 
on site positions is only through T = r l  - r2. 

keep the term of lowest order, which is 

since K,({$}) is an odd function of $ and the term linear in r vanishes. 
W e  will devote the next section to the evaluation of thiseffective king Hamiltonian. 

2.4, Effectiue interaction in the equivalent Ising model 

For simplicity we will write all formulae and make all considerations for a 2-dimensional 
lattice. 

In order to evaluate the average in (11) we note that we are working with a non- 
Bravais lattice; we must therefore distinguish between two different spin deviation 
fields $r = & - 4: on two inequivalent sites; we will call + those on the plaquette's 
corners and x those on the plaquette's centres. The harmonic Hamiltonian has  then 
the explicit form 

(11) 
1 

H, = 5 [ A ( k ) d ' - k h  + B ( L ) X - d k  - c ( k ) ( $ - k x k  + x - k $ k ) ]  

where 

(12) 

(13) 

(14) 

Q 

Q 

Q k= k 

E ( L )  = 45, COS - 2 

C ( k )  = 4 J ,  COS - COS - COS 2 2 2 2  



Fem'magnetic-helimagnetic transition 4699 

with usual definition of Fourier transformed field variables 

From this Hamiltonian we obtain the correlation functions 

where 

Note that we could proceed in another, completely equivalent way: since the U 
spins at face centres in ( 1 )  do not interact with each other, we can perform the 
statistical sum over these variables in the partition function, obtaining an effective 
inequivalent interaction between the surrounding S spins. All details are given in 
appendix 1. In this way we might avoid the difficulties of working with two fields, at the 
price of the appearance of non-bilinear spin-spin couplings in the Hamiltonian. Since, 
as i t  turns out, perturbative calculations are somewhat more lengthy in the latter case, 
we will maintain the two-field attitude. It is nonetheless interesting to draw one's 
attention to the occurrence of non-quadratic spin interactions in XY and Heisenberg 
model as a result of decoration, a fact that is usually overlooked in literature (see, 
however, [24]). 

The average in (IO) is a sum of terms of this form 

where A;$, = $;, - $f2; greek indices label the two fields, $: = 

following decoupling scheme: 

$f = x,. 
Since the averages are taken with respect to a Gaussian distribution, we have the 

where the notation Perm refers to permutations of upper indices that give analogous 
contributions. 

We will show in appendix 2 that the first set of t e r m  in (22) does not actually 
contribute to the effective king Hamiltonian; this is due to the fact that, as we said, 
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at low temperature the model is effectively 1-dimensional, so that Ising spins do not 
depend on the z coordinate. We can therefore integrate in all expression over vz.  

The non-trivial contribution of the second term can be evaluated only numerically: 
it is nonetheless possible to estimate analytically the asymptotical behaviour of this 
term, which gives the tail of the interaction between king spins, in the continuum 
limit. 

Again, the explicit calculation is contained in appendix 3. We only quote here the 
result: 

- 
where 4 = J, sin(Q/2), Jy = J, sin Q. 

Therefore we can rewrite (10) as 

the coefficients A,,,, going to the constant positive value (24) for large In-n'i, where 
the integers n, n' label different rows in the y direction. Numerical evaluation confirms 
the positive sign at  all distances. 

This result tells us that the ferrimagnetic state is stabilized a t  low temperature, 
since it corresponds to the antiferromagnetic arrangement of the Ising pseudo-spins, 
which is preferred by the plus sign in (25). Our finding is in agreement with current 
understanding of 'order by disorder': temperature selects the most collinear ground 
state. 

A helimagnetic low-temperature phase may be obtained by addition of a further an- 
tiferromagnetic interaction coupling neighbouring plaquettes; we will assume, as most 
natural, a weak exchange Jz = -d1 between plaquettes' centres, directed along y. 
Its role will be discussed in the following section 3. 

2.5. Ferrimagnetic io pammagnelic transition 

Before addressing the subject of modulated ordering, we wish to speculate about 
the disordering of the ferrimagnetic phase. As we have seen, it results from the 
antiferromagnetic arrangement of an anisotropic king model, whose coupling constant 
are JGR and JZ'". 

Since Jiff < J,", the critical temperature is given by 

T, = J,'"exp(J,''/T,). (26) 

The result we have just obtained allows us to estimate 

Jim - TZAnpn+, sj T'A. (27) 

To estimate J,* we look for main excitations of finite energy. As shown in figure 4, 
it is possible to devise a soliton-like mechanism for flipping half of two neighbouring 
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, , . , * ,+ ,+ ,+ . ' . * \+  

. 8 , 8 . ? \ 1 \  

r r / - .  / / /  

\ \ \ \ \ \ \ \ \  

Figure 4. Solitonic configuration in the ferrimagnetic state. The excitation energy 
of such solitons provides M estimate of the effective coupling Jiff in the (pseudo)hing 
model dong the z dimtion. and allows to evdeate an approximate Kosterlitz- 
Thouless transition temperature in ZD in this phase. 

rows from + - to - + , which corresponds to changing the angle between XY spins 
bordering the same rows from +QY to -QY . 

We write the energy of such a soliton along z as 

d r  [2 J (dz)'  - d+ +J,sin2($(r))+4Jlsin '(?)I (28) 
-m 

where the potential 

V(+) = Jysin2($(z)) + 4J1 sin 

= - I Jy I [sinz($(r)) - 4 cos Qy sin2 (?)I (29) 

is minimum for $ = 5QY , as expected. 

ential equation associated to (%), as 
The energy of the lowest-lying state may be obtained without solving the differ- 

CQY 

For simplicity we use the double-well approximation 

which gives 

so = $m(Qy)3. 
We assume, therefore, JzR = 2. 2J,IJyI(QY)3; inserted in (26), together with 

3 J -  
(27), it gives the implicit equation 

T, coincides with the Kosterlitz-Thouless temperature of the model in its collinear 
(ferrimagnetic) phase. We turn now to the phase diagram near the collinear-modulated 
transition. 
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3. Ferrimagnetic-helimagnetic transition 

9.1. Inter-plaquette coupling 

The high degeneracy in the ground state of the model may be removed by addition of 
an interaction between neighbouring plaquettes. Any purely ferromagnetic coupling 
will select the ferrimagnetic ground state, while an interaction which is antiferromag- 
netic in the direction of the y axis will stabilize the helimagnetic phase. We assume 
the strength of this inter-plaquette exchange lJzl to be small compared to the energy 
scale J, , i.e. lJzl = E J ,  ; in fact, as we show in appendix 4, the perturbative treat- 
ment of this term is justified as long as E < f i .  But since the indirect coupling 
provided by spin waves is of order TZ , we have the stronger condition E < T2 which 
sets the temperature range of the validity of our approach. 

A helimagnetic structure corresponds to a ferromagnetic arrangement of king 
pseudo-spins; it can be stable only at very low temperature, since a large entropic 
gain is obtained by creating domains of opposed chirality (in other words, by creating 
walls). In this case the ferrimagnetic or other commensurate structures are favoured. 

9.2. Wall free energy 

We now want to study how the ferri-helix transition takes place. To do this, we 
consider an array of chirality domains of constant width 1 in unit of lattice constant. 
The free energy of this configuration is again given by (25); first of all, if n and n' 
belong to domains of equal chirality we get the free energy of the pure helimagnetic 
phase, that we denote F,,(T,E). Next, since we do not have an analytical expression 
for the coefficients A,,,, valid at all length scales, weapproximate them by their limit 
value A ,  adding a term AC(T) to account for the difference. Therefore we rewrite 
(25) in the form 

F(T) = Fh(T, E )  - N 
. T ~ A ~  (c(T,E) + c) 

1 - 'c' 

(34) 

(35) 

where primed summation reminds that n and n' lie in domains ofopposite chirality; 
hence the product T~T,, is always equal to -1, which gives the minus sign in (34). 
NI1 is the number of rows in each domain. 

The evaluation of the sum is now just a matter of book-keeping of the number 
of pairs of sites at a given distance. Take sites in neighbouring domains; defining 
In - n'l = k gives 1 6 t < 21 - 1. There is one pair of sites at distance 1, two pairs at 
distance 2, and so on, therefore the first term is 

I .  

Then we find 1 - 1 pairs at a distance 1 + I , / -  2 at distance 1 + 2, up to 1 pair 2I - 1 
sites away: hence 
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The same holds for third-nearest-neighbour domains (or next-nearest-neighbour 
walls), for which 21 + 1 < E < 41 - 1, and so on; therefore we find 

we can finally write C in the form 

- k  " k C = - - 2 c c ( - l ) p + l  
(PI + k)5 ' p = l  k=1 

k5 
k=1 

The first term is the wall self-energy, while the second is the sum of the interactions 
between the pth-neighbour walls; replacing the sum over k by an integral we can 
evaluate this term as follows 

W 

= s C ( 3 )  where C(3) = l/p3 
p = l  

We have thus found that the free energy per site F/Ar of the array of walls consists 
of an attractive part going x 1/i and a repulsive part a l/i4; it can be considered 
as a variational expression to be minimized over I ,  in order to find the equilibrium 
value of the inter-wall distance Io at fixed temperature and next-nearest-neighbour 
coupling J,. 
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$3. The sequence of phase tmnsilions 

Suppose we start in the ferrimagnetic region, near to  the ferri-helix boundary; the 
king spins arrangement is antiferromagnetic, or, in a widespread notation [ZO], ( 1 )  
(one up, one down). 

Then the wall free energy is minimized at I, = 1. Lowering the temperature or 
increasing lJ21, we move towards the helimagnetic side; since I can take only integer 
values, I2 = 2 will be the next minimum. At some intermediate point, however, I, and 
I ,  will correspond to  the same free energy, minimal by definition: it appears as a first 
order transition between the phases (1) and (2). 

One might wonder whether a Devil’s staircase appears as in the Frenkel-Kontorova 
model [2]. This is not the case. A Devil’s staircase consists of an infinite number of 
intermediate phases between any two phases. For instance, a (I, I + 1) phase made of 
alternating domains of opposite chirality with two different widths should be found 
between the phases (0 and (I + 1). 

A Devil’s staircase would actually be predicted in our model if only pair inter- 
actions wz(I) were assumed between domain walls. But this would not be correct, 
because the pair interactions (34) between rows can be seen to lead to three-body 
forces between domain walls. 

To be specific, the phases ( [ , I  + 1) can be shown to be unstable. We will briefly 
sketch the derivation below. 

The structures (I) and ( I +  1) have t.he same free energy for a value of 8 = E,  which, 
as we see from (34), is given by 

C(T,E,) = IC(([ + 1))  - ( I  + l)C((I)) (43) 

where 
s o 1  

C((0) = [(I - k ) f ( 2 P l  + 1 + k) + k f ( 2 P l +  k)l (44) 
p=O k = l  

f(k) = l/k5. 
The stability of the structure (I, I +  1 )  for this special value E, would imply, again 

from (34), 

(45) 
1 - [2C(T, cC) + ‘W(1, I + 1))) < f [C(T,c,) f E(([))] 21t1 

where 
m a 1  

E((/, I +  1)) = CC[(I+ 1 - k)f (2pI  + I + p t k) + k f ( 2 p l + p  t k)] . 
p = O E = 1  

(46) 

Inserting (43) into (45), we find that the structure ( [ , I +  1) is stable if 

2c((I,r+r))>C((I))+c((I+ 1)). (47) 

Straightforward evaluation shows that this condition is not satisfied, proving that 
there is no Devil’s staircase in this model, neither are there longer-period intermediate 
phases between ( l )  and (I + 1). 
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We stress again that this peculiar ordering appears in the chirality degrees of 
freedom, near the transition between the ferrimagnetic and helimagnetic regions of 
XY spins. In two dimensions there is obviously no long range magnetic order, only 
perhaps algebraic correlations; indeed, we are considering classical two-component 
spins, while in three dimensions the ferri and helical states are true thermodynamically 
stable phases. As we said before, a three-dimensional version of this model is easily 
realized by stacking planes along the orthogonal z direction; the interplanar coupling is 
assumed ferromagnetic and weak, so that the topology of low-temperature excitations 
is essentialy two-dimensional (at low temperature, domain walls are rigid surfaces 
lying in the zz plane, and the relevant dynamics takes place in the zy plane). 

3.4. The two-dimensional case 

In two dimensions, a floating phase [14], where chirality correlations are algebraic 
but the chiral long-range order is lost, might be suspected to occur, even at low 
temperatures, when the inter-wall period ( I )  is long. 

In fact, kinks normally occur on isolated domain walls in two dimensions even at 
low temperature (for instance, this happens in the ANNNI model [15]). 

However, in the present case this is not so, in principle. 
The reason is that the energy of an isolated kink is of the order of In R, if R is some 

characteristic size of the system, and thus diverging in the thermodynamic limit, as 
we show in appendix 5. In fact, kinks are associated with a kind of fractional vortex, 
since the phase of the XY spins changes by 2 Q Y  as one circles a kink along a close 
contour; therefore the presence of a kink perturbs the order on the whole plane. 

Heli 

F l t l  

Figure 5. Qualitative phase diagram at Low tenipersture in both two and three 
dimemiom near the ferrimagnetic-helical transition. On the abscissa an appropriate 
inueming fundion of the weak inter-plawette coupling L = I&l/h must be un- 
derstood. The inserts show details of the intermediate region at increasing scales. 
Symbols (n) denote the regular alternation of n +'sand -'S. 

A kink depairing transition may occur at fairly low temperature if the pitch of 
the helix is nearly commensurate. For instance, if spin rotation from a plaquette to a 
neighbouring one is close to 2n/3, the energy of a set of three kinks of the same sign 
will diverge logarithmically, but with a small coefficient. Therefore the Kosterlitz- 
Thouless transition temperature will, in principle, be low. However, the core energy 
will he high and there will be very few kinks, so that the experimental observation of 
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such a phenomenon will he very difficult. We emphasize that this Kosterlitz-Thouless 
transition of the wall array has nothing to do with the ferrimagnetic to paramagnetic 
transition, which is also of the Kosterlitz-Thouless type. 

The low-temperature part of the phase diagram in both two and three dimensions 
is sketched in figure 5. 

4. Conclusion 

We have presented a classical XY (planar rotator) model which, due to the special 
form of the interactions, undergoes an unusual type of transition from helimagnetism 
to ferrimagnetism. This transition occurs if the interplaquette coupling is reduced 
at fixed temperature, or, more physically, if the temperature is increased a t  fixed 
microscopic couplings. 

The transition takes place through an infinite sequence of first order transitions. 
The structures successively visited consist of domains of cqual width I and infinite 
length. In each domain the XY spin are helimagnetically arranged, negative and 
positive chirality alternating in neighbouring domains. Thus, the whole structure is, 
in principle, ferrimagnetic for all intermediate phases. 

The mechanism described in this work is a low-temperature process. It does not 
seem to bear any relationship to the (more usual) high-temperature transition mcch- 
anism described, for instance, in [6]. Other types of transitions may be expected 
in such complicated systems within the magnetically ordered regions. One possible 
mechanism (of the Kosterlitz-Thouless kind) has been described in section 2.5, 

Several interesting issues still remain on the table: the critical behaviour deserves 
to he better characterized, even though the analogies with theso-called odd model [25] 
allow one to guess that the specific heat will indeed possess the Ising-like divergence 
[26] observed in the compounds mentioned in the introduction; the behaviour in an 
applied magnetic field may also be considered, and new features may be expected in 
view of what is known of other l(Y helimagncts [27], where a uniform field may lock 
the spin phase in an incomplete Devil’s staircase. 

Another open question refers to quantum effects: these are believed to be similar 
to thermal effects in one dimension more, and in fact we expect that they remove the 
infinite degeneracy in the ground state leading to the selection of the ferrimagnetic 
state at T = 0. However, since the detailed nature of the collinear to modulated 
transition relies on the explicit form of the effective wall-wall potential, we cannot 
rule out the intriguing possibility of a ‘quantum’ Devil’s staircase in two dimensions. 
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Appendix 1 

I t  is well known in the case of king spins [25] that a bilinear Hamiltonian of the form 

N = - c S R S R ,  (Al.l) 
RR’ 
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may be equivalent, on a decorated lattice, to a Hamiltonian with multi-spin interac- 
tions, meaning that it is in general possible to transform the partition function of the 
former into that of the latter, by tracing over the decorating spins. 

However, to our knowledge, the same possibility has not been investigated for vec- 
tor spin models, namely planar and Reisenberg. This is what we do in this appendix. 

Consider a Hamiltonian such as 

H = - J ~ S ~ .  sR, - C J ~ ~ ~ ~  . u p  

RR' RP 
(A1.2) 

We do not require that spins be classical. 
The up operators do not interact with each other, and thus appear as decorating. 

Assume that any non-vanishing JRp is equal to g; then the operator 

(A1.3) 

depends only on SR operators. We can therefore write H in ( A 1 4  as 

H = - J,,,s,. s,, - EM,.  up 

RR' P 

9 = - JRR,SR.  S,, - - [ ( M ,  +a,)' - M," - u(u + l)] . (A1.4) 

Defining in an obvious way H E H, + E, H,, we can write the partition function 

RR' 

as 

exp(-PH,) nllp exp(-PHp) 
P 

with the position 

exd-b'f,) = apexp(-PHp). (A1.6) 

We see that E, fp plays the role of an effective Hamiltonian involving only linear 
combinations of SR operators. 

As an example, consider Heisenberg (quantum) spins; textbook formulae allow us 
to diagonalize simultaneously two coupled angular momenta. If, for simplicity, we take 
U = 1/2, we can easily perform the trace in (A1.5) in the base where uz is diagonal. 
For each eigenvalue M(M + 1) of M,' , spins up and Mp couple into a parallel state 
of multiplicity 2(M + 1/2) + 1 = 2(M + 1) and an antiparallel state of multiplicity 
2 ( M  - 1/2) + 1 = 2M; then 

hence 

e x p ( - p f , ) = 2 ( M + l ) e x p { ~ M ) + 2 M e x p { - ~ [ M + l ] } .  (A1.8) 
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Of some interest may be the low-temperature limit of these expressions, b0t.h for 
positive and negative values of g: 

(i) g > 0; the second term in (A1.8) is exponentially small at low T and can therefore 
be neglected. Remembering that 

(A1.9) 
1 1  

we obtain 

(ii) g < 0; now the first term is negligibly small in (A1.8). We get 

(A1.lO) 

( A l . l l )  

After the extreme quantum case U = 1/2 we address the opposite, classical limit, 
We distinguish between two situations, where spins are two- and three- U = 00. 

dimensional vectors, respectively. 

(a) Planar rotator (classical XY) 
Giving the appropriate meaning to the trace operation 

Tr,exp(ggu, . M p )  = dBexp(~guM,cosO). 
-* i 

Equation (A1.6) can be explicitly given as 

exp(-PJ,) = Io(PgrMp). 

and M ,  is the absolute value of the vector sum (A 1.3)), 

(Al.12) 

(Al.13) 

(Al.14) 

The low temperature limit of the effective Hamiltonian is readily found as 

(A1.15) 
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from the largeargument expansion of the modified Bessel function, Io(.) - e/=. 
The logarithm in (A1.15) can be neglected in this limit. 

Expanding the resulting effective Hamiltonian about ground state configurations 
up to cubic terms, as in the body of the paper, we recover a perturbative treatment 
fully equivalent to that of section 2, involving, however, only one kind of field variable 
on a Bravais lattice. 

(4, Classical Heisenberg 
In this case the trace is defined by 

Trpexp(p'gup. M p )  = 2~dBsinBexp(PguM,cosB) (A1.16) 
-1 1 

and we obtain immediately 

Again the low T limit is straightforward, 

(A1.17) 

(A1.18) 

and only slightly different from the previous one. 

is just a pair interaction. Each decorated bond RR' contributes a term such as 
Finally, we briefly comment on decorated bonds. In this case the effective coupling 

fRR' - - 191 (2572 + 2s, ' SR') + (A1.19) 

which for two-component spins may be written in terms of the polar angles +R of the 
spins 

(A1.20) 

I t  can be easily seen that an antiferromagnetic, direct-exchange interaction, added to 
this indirect, ferromagnetic coupling, will induce a canted state for a single bond. 

(A2.1) 

(A2.2) 
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Note that here and in what follows, r ,  and rz label both plaquettes’ corners and 

We will now show that (A2.1) is independent of r’s. First of all, we rewrite it, 
centres, and therefore do not sit on a Bravais lattice. 

introducing Fourier transformed fields, as 

x ([$F - $2 exP(ik. (r, -.,,,I 
x [$: - $2 exp(-ik. (ri - r;))]  ),. (A2.3) 

The notation $:’ is employed to explicitate the dependence of the fields on the 
sublattice that they sit on; in the notation of the body of the paper, $i = $& if r is 
the position of a plaquette’s corner, while $; = xl: if r = p is a site at the centre of a 
plaquette. 

Perform now the sum over rl along a given line parallel to y, keeping r;, r; and 
r, - r2 k e d .  Then 4:. and & stay constant, as well as G,,,,. 

Only the last factor in (A2.3) varies, and its sum vanishes unless k, = 0. The 
equation then takes the form 

(A2.4) 

(i) r, ,  r2, r; and r; aze the four vertices of a plaquette. In this case the only non- 
vanishing contribution results from the terms with r ,  -r2 = 6, (where we remind that 
6, is the unit vector parallel to y), because if r ,  - r2 = 6 , ,  then sin(# - &) = 0. 
Remembering that sin(&?, - &’>) = rpsinQ(yl - y2), where p is the centre of the 
plaquette under consideration, we can write (A2.4) as 

where C,, is a constant factor; 
(ii) r , ,  r2 and r; label three corners while r; = p’ is a centre. As before, we can 
assume r ,  - r2 = 6,. Note that, 6, being the unit vector joining each plaquette’s 
centre to its neighbours, the term containing $: = x, vanishes when we sum over its 
four neighbours rk, since 

(A2.6) Csin(@+,x  - $,,) = 0. 
61 

Therefore, we find 

A,, = %J,,J, ~ ~ 7 p + p , 6 1 : . , 0 ~ i n Q s i n ( Q / 2 )  
Y PP‘ b y  

{+k$-t),exp(iku(pu - p i ) )  

with a different constant factor C12; 

(A2.7) ’ 
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(iii) finally, rl = p and T; = d are plaquettes' centres while r2 and T; are corners. 
Again, terms containing xk vanish after summation. Then the contribution of this 
term is 

x sin2(ky/2) (~,&-&,exp(iky(py - P&N. ( A 2 4  

We can now show the irrelevance of the first term of ( 2 3 ,  as asserted, since 

(A2.9) 
2 

= Jy cosQ + J ,  cos(Q/2) 

and summation over k, in A,,, A, ,  and A,, gives zero unless py = pb. These (con- 
stant) contributions are therefore the same in every ground state, and only the second 
term in (22) is relevant for ground state selection. 

Appendix 3 

We give in this appendix the explicit form of the king spinspin effective exchange 
coupling, together with its analytical long-distance behaviour. It reads 

The coefficient of 3, 7, = Jy sin Q is 

(A3.1) 





(A3.9) 
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a2 

(A3.10) 

where we have used the property 

(A3.14) 

(A3.15) 



(A3.16) 

(A3.17) 

(A3.18) 

- 6(P)  

(A3.19) 

(A3.20) 

(A3.21) 
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Collecting previous terms, we get the last contribution in the form 

(A3.28) 

(A3.29) 

The long-wavelength behaviour of the correlator is 

where we have defined t,g, and g, as in the text, and L is the size of the system. 
We need the derivatives 

where the positions x2 = p:/(l + gz),  yz = p;/(l+ gy), r2 = r 2 + y 2  have been made. 
All terms are integrated over L'; after a number of integrations by parts all integrals 

are reduced to 

(A3.34) 

Adding all contributions and performing some tedious algebra we find the final 
result 

(A3.35) 
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Appendix 4 

The helimagnetic structure is stabilized by coupling each plaquette to its neighbours 
with an appropriate, weak interaction Jz = -cJ , ,  which is treated perturbatively. 

The Hamiltonian is now 

ff = - J i j  cos($i - $ j )  - Lij(E) cos(& - ,$j) 
i j  ij 

(A4.1) 

with Lij(&) = O(E).  
Consistently, we assume that ground state configurations are affected only to order 

E ;  that is, denoting by {@} and {@} the perturbed and unperturbed ground state, 
respectively, we can write 

4; = +! + A& (A4.2) 

where A @  - E .  

get 

H = Eo + cJij cos(4p - 4:)[1 -COS(+; - y5j)] 

J~~ sin(@ - @sin(+i - l l j )  

Expanding about the ground state and retaining only terms to first order in E ,  we 

i j  

+ 
i j  

+ E; + ELij COS(4Y - ,$P)[l -cos(+( - + j ) ]  

i j  

+ E ~ ~ ~ s i n ( @  -@sin($; - + j )  

+ J~~ sin(@ - 4;) - + j ) ( ~ &  - A@ 

+ c~~~ COS(& - +;)sin($j - +j)(~&' -A@).  

ij 

ij 

(A4.3) 

In our perturbative approach, we have now two small parameters, E and 
4; - 4; = Q Y ;  therefore, we discard all terms containing both these factors. Further, 
we neglect terms of order E in the harmonic part. We are left with the perturbing 
Hamiltonian 

i j  

1 H - c J i j  sin(@ - @(+, - $j)3 3 - 3  ,. 
$3 

(A4.4) 
1 - - EJij  COS(^^ - q5j)($i - +j)3(A4: - A#;) 

ij 

which gives the term C(T,E) in (34). 

factor T"/', and globally one has 
Each power Hg introduces a factor PE". Taking the trace gives an additional 

The perturbative expansion is then convergent only if 

E < f i .  (A4.5) 
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Appendix 5 

Consider an isolated kink in an isolated wall (figure AI), the underlying configuration 
being helimagnetic; we will show that afmctional lroriex is associated with the kink, 
meaning by 'fractional' that the phase change occurring along a close loop circling the 
kink is, in general, only a fraction of 2s. This gives a non-integer vortex strength. 

x r -L- p 
+ + +  

~ 

+ + + + - - - - 1  
~ Ll + + + + - - - ~ -  

Figure A l .  Kink in M isolated wal l  in the heliaagnetic phase. Shown is the closed 
palh dong which the spin phase changes of 289.  85 explained in the text. 

To verify this, we follow a close path starting on the left-hand side, a t  a distance L 
from the wall, in the upper part of the diagram; on approaching the wall, the angle 
8, = q5i + QY . ri between neighbouring spins equals 4; + QYL. On the right-hand 
side, we have Si = q5i - QY . ri , by definition of domain wall, and the change in 8 at 
a distance L' is -QYL'. The effect of the kink is to enlarge the left hand region by 
one lattice spacing, at the expenses of the right-hand side; therefore, the phase change 
along a rectangular loop whose sides are parallel to the I and y axes turns out to be 

(A5.1) A8=  QY[L- L'+(L ' -  1) - (L + l)] = -2QY 

if no rearrangement takes place. 

general, equal to A. We can define a new angular variable d ; ,  
This is the analog of a usual vortex, the only difference being that QY is not, in 

s 
G. = -0. (A5.2) ' - Q Y  ' 

whose energy is 

(A5.3) 

Since 1Ir displays usual vortex behaviour, its lowest-lying configuration has approx- 
imately the energy [22] 

E - JY(Qy)' In R 

showing that vortex strength is non-integer 

(A5.4) 
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